Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12796, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488853

RESUMO

Glucocorticoids are the final effectors of the stress axis, with numerous targets in the central nervous system and the periphery. They are essential for adaptation, yet currently it is unclear how early life events program the glucocorticoid response to stress. Here we provide evidence that involuntary swimming at early developmental stages can reconfigure the cortisol response to homotypic and heterotypic stress in larval zebrafish (Danio rerio), also reducing startle reactivity and increasing spontaneous activity as well as energy efficiency during active behaviour. Collectively, these data identify a role of the genetically malleable zebrafish for linking early life stress with glucocorticoid function in later life.


Assuntos
Glucocorticoides/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/metabolismo , Reflexo de Sobressalto , Estresse Fisiológico , Natação , Peixe-Zebra/metabolismo
2.
Endocrinology ; 156(9): 3394-401, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26132917

RESUMO

Zebrafish offer an opportunity to study conserved mechanisms underlying the ontogeny and physiology of the hypothalamic-pituitary-adrenal/interrenal axis. As the final effector of the hypothalamic-pituitary-adrenal/interrenal axis, glucocorticoids exert both rapid and long-term regulatory functions. To elucidate their specific effects in zebrafish, transgenic approaches are necessary to complement pharmacological studies. Here, we report a robust approach to specifically manipulate endogenous concentrations of cortisol by targeting heterologous proteins to interrenal cells using a promoter element of the steroidogenic acute regulatory protein. To test this approach, we first used this regulatory region to generate a transgenic line expressing the bacterial nitroreductase protein, which allows conditional targeted ablation of interrenal cells. We demonstrate that this line can be used to specifically ablate interrenal cells, drastically reducing both basal and stress-induced cortisol concentrations. Next, we coupled this regulatory region to an optogenetic actuator, Beggiatoa photoactivated adenylyl cyclase, to increase endogenous cortisol concentrations in a blue light-dependent manner. Thus, our approach allows specific manipulations of steroidogenic interrenal cell activity for studying the effects of both hypo- and hypercortisolemia in zebrafish.


Assuntos
Hidrocortisona/metabolismo , Glândula Inter-Renal/metabolismo , Fosfoproteínas/genética , Elementos Reguladores de Transcrição , Animais , Animais Geneticamente Modificados , Optogenética , Peixe-Zebra
3.
BMC Dev Biol ; 14: 41, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25427861

RESUMO

BACKGROUND: The homeodomain transcription factor orthopedia (Otp) is an evolutionarily conserved regulator of neuronal fates. In vertebrates, Otp is necessary for the proper development of different regions of the brain and is required in the diencephalon to specify several hypothalamic cell types, including the cells that control the stress response. To understand how this widely expressed transcription factor accomplishes hypothalamus-specific functions, we performed a comprehensive screening of otp cis-regulatory regions in zebrafish. RESULTS: Here, we report the identification of an evolutionarily conserved vertebrate enhancer module with activity in a restricted area of the forebrain, which includes the region of the hypothalamus that controls the stress response. This region includes neurosecretory cells producing Corticotropin-releasing hormone (Crh), Oxytocin (Oxt) and Arginine vasopressin (Avp), which are key components of the stress axis. Lastly, expression of the bacterial nitroreductase gene under this specific enhancer allowed pharmacological attenuation of the stress response in zebrafish larvae. CONCLUSION: Vertebrates share many cellular and molecular components of the stress response and our work identified a striking conservation at the cis-regulatory level of a key hypothalamic developmental gene. In addition, this enhancer provides a useful tool to manipulate and visualize stress-regulatory hypothalamic cells in vivo with the long-term goal of understanding the ontogeny of the stress axis in vertebrates.


Assuntos
Hipotálamo/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Sequência Conservada , Elementos Facilitadores Genéticos , Expressão Gênica , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Especificidade de Órgãos , Sistema Hipófise-Suprarrenal/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-23653595

RESUMO

The stress response is a suite of physiological and behavioral processes that help to maintain or reestablish homeostasis. Central to the stress response is the hypothalamic-pituitary-adrenal (HPA) axis, as it releases crucial hormones in response to stress. Glucocorticoids (GCs) are the final effector hormones of the HPA axis, and exert a variety of actions under both basal and stress conditions. Despite their far-reaching importance for health, specific GC effects have been difficult to pin-down due to a lack of methods for selectively manipulating endogenous GC levels. Hence, in order to study stress-induced GC effects, we developed a novel optogenetic approach to selectively manipulate the rise of GCs triggered by stress. Using this approach, we could induce both transient hypercortisolic states and persistent forms of hypercortisolaemia in freely behaving larval zebrafish. Our results also established that transient hypercortisolism leads to enhanced locomotion shortly after stressor exposure. Altogether, we present a highly specific method for manipulating the gain of the stress axis with high temporal accuracy, altering endocrine and behavioral responses to stress as well as basal GC levels. Our study offers a powerful tool for the analysis of rapid (non-genomic) and delayed (genomic) GC effects on brain function and behavior, feedbacks within the stress axis and developmental programming by GCs.


Assuntos
Glucocorticoides/metabolismo , Optogenética/métodos , Estimulação Luminosa/métodos , Comportamento Predatório/fisiologia , Natação/fisiologia , Animais , Animais Geneticamente Modificados , Larva , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...